
Word Embeddings via PMI-matrix Factorization
95865 recitation by Emaad Ahmed Manzoor, last updated 2018.01.26.

1 Vector representations

Machine learning algorithms take as input vectors corresponding to each sample in the data.
There are various ways of transforming raw input into vector representations. Some examples:

1. Images: Given a grayscale N × N image containing pixel values ∈ [0, 1], “unroll” the image
into a long vector of size N2.

2. Documents: Given a vocabulary V and a document, compute the frequency of each word in
the document. Represent the document by a size-|V| vector of its word frequencies.

2 Vector distance/similarity

Given two vectors uuu ∈ RN and vvv ∈ RN , there are various ways to compute the distance and
similarity between them. The most common way is to compute the Euclidean distance:

deuclidean =

√√√√ N

∑
i=1

(uuu[i]− vvv[i])2 (1)

However, in the case of document vectors, the Euclidean distance is a poor measure of how dif-
ferent two documents are. Consider two documents as follows:

du = "the cat the dog"

dv = "the the the cat cat cat dog dog dog"

Here, the vocabulary is V = {"the", "cat", "dog"} and |V| = 3. Let each word be associated with
an index: "the" with 1, "cat" with 2, "dog" with 3; that specifies its position in the document vec-
tor. Hence, the document vectors lying in R3 are:

uuu = [2, 1, 1] (2)

vvv = [3, 3, 3] (3)

The Euclidean distance between uuu and vvv is 3. Observe that simply increasing the length of either
document makes it more different than the other!

To address this issue, document distances are usually measured using their cosine distance:

dcosine =
uuu · vvv
‖uuu‖‖vvv‖ (4)

This is nothing but the angle between the two document vectors; it is independent of how long
(the magnitude) each vector is. Hence, you will commonly see cosine distances being used in the
natural language processing domain.

95865 Recitation: Word Embeddings as PMI-matrix Factorization – Emaad Ahmed Manzoor 1 of 3

3 Word embeddings

Word embeddings are vector representations of words. We would like word embeddings to cap-
ture linguistic regularities, such as the following:

1. Semantically similar words have similar embeddings, and dissimilar words have dissimilar
embeddings. For example, we would like the embedding of google to be similar to the em-
bedding of apple and facebook because all three of them tend to appear in similar contexts.

2. Composing word embeddings is semantically meaningful. For example, we would like the
vector composed by king - man + woman to be very similar to the embedding of queen.

(Mikolov et al. 2013b) and (Mikolov et al. 2013a) introduced the skip-gram model to construct
such embeddings in an unsupervised manner from any large text corpus using a neural network.
In this recitation, we will do something similar, but by factorizing the PMI matrix. Both methods
assume the distributional hypothesis: that words occurring nearby in text (in the same context) are
semantically related.

3.1 Mathematical formulation

The input to the skip-gram model is constructed by building a collection of (pivot word, context
word) pairs from the input document collection. This is done by considering each word as a pivot,
and then looking at a window around that word to obtain its context words.

Figure 1: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

95865 Recitation: Word Embeddings as PMI-matrix Factorization – Emaad Ahmed Manzoor 2 of 3

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

The neural network is then trained to learn embeddings for each word such that:

1. ppp · ccc is maximized for every pivot word embedding ppp and the embedding of every word in
its context ccc.

2. ppp · c′c′c′ is minimized for every pivot word embedding word ppp and the embedding of every
word not in its context c′c′c′.

3.2 PMI matrix factorization

Instead of using a neural network, we could obtain embeddings with the same properties by fac-
torizing the PMI matrix of the document collection (Levy et al. 2014).

The PMI matrix M ∈ |V| × |V| is defined for every word pair (u, v) in the vocabulary V as fol-
lows (this should be familiar from the lecture):

M(u, v) = log
(

P(u, v)
P(u)P(v)

)
(5)

Matrix factorization via the singular-value decomposition (SVD) decomposes a matrix M into ma-
trices U, Σ and V such that M = UΣVT. This decomposition has a number of nice mathematical
properties that we will not dwell on. Each row of the U matrix is a word embedding, and the set
of embeddings exhibits the desired properties mentioned earlier.

3.3 Implementation

• Notebook: https://gist.github.com/emaadmanzoor/1d06e0751a3f7d39bc6814941b37531d

• Dataset: https://www.kaggle.com/hacker-news/hacker-news-posts/downloads/HN_
posts_year_to_Sep_26_2016.csv

• Notes: http://www.eyeshalfclosed.com/teaching/95865-recitation-word2vec_as_PMI.
pdf

References

Levy, Omer et al. (2014). “Neural word embedding as implicit matrix factorization”. In: NIPS,
pp. 2177–2185.

Mikolov, Tomas et al. (2013a). “Distributed representations of words and phrases and their com-
positionality”. In: NIPS, pp. 3111–3119.

Mikolov, Tomas et al. (2013b). “Efficient estimation of word representations in vector space”. In:
ICLR.

95865 Recitation: Word Embeddings as PMI-matrix Factorization – Emaad Ahmed Manzoor 3 of 3

https://gist.github.com/emaadmanzoor/1d06e0751a3f7d39bc6814941b37531d
https://www.kaggle.com/hacker-news/hacker-news-posts/downloads/HN_posts_year_to_Sep_26_2016.csv
https://www.kaggle.com/hacker-news/hacker-news-posts/downloads/HN_posts_year_to_Sep_26_2016.csv
http://www.eyeshalfclosed.com/teaching/95865-recitation-word2vec_as_PMI.pdf
http://www.eyeshalfclosed.com/teaching/95865-recitation-word2vec_as_PMI.pdf

	Vector representations
	Vector distance/similarity
	Word embeddings
	Mathematical formulation
	PMI matrix factorization
	Implementation

