
Equitable Persuasion in 
Incentivized Deliberation 

An impossible tradeoff?

Emaad Manzoor 
George H. Chen 

Dokyun Lee 
Michael D. Smith



deliberation 
extended conversation among two 
or more people to come to a better 
understanding of  some issue 
(Beauchamp, 2020)
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cdd.stanford.edu

Stanford Online Deliberation PlatformFigure 2: The Stanford Online Deliberation Platform. Note the queue with a timer, agenda management elements, and control
elements for the participants to self-moderate.

must click a button to enter a queue to speak for a limited
length of time or to briefly interrupt the current speaker. The
platform also integrates an agenda, which the participants
are encouraged to follow by means of nudges. The platform
transcribes the active speaker in real-time and monitors for
offensive content (both using an external API). If offensive
content is detected, or the conversation seems stalled on an
agenda item, the bot solicits feedback from the participants
to decide whether to block a user or advance the agenda to
the next item, respectively. There are several other subtle
features to replicate the functionality of a human moderator.
The bot also integrates a collaboration phase, where after
the conversation, the participants collectively come up with
a small number of questions or action items.

None of the mainstream consumer video-conference ser-
vices provide enough fine grained control to build the kind
of functionality we needed; hence, our moderator bot sits on
top of a custom video-conferencing system that we built us-
ing Twilio’s WebRTC-based APIs (Twilio Blog Post 2018).

4 The proposed demo

The demo will involve us setting multiple laptops at the con-
ference venue. Participants will be able to observe or partic-
ipate in an ongoing deliberation, and also observe or partici-
pate in a collaboration task. They will be able to experience
what it feels like to be in a video-conferencing system that
enforces a queue, much like Robert’s Rules of Order. They
will also be able to experience how the presence of a mod-
erator bot alters their perception of norms of conduct, and
how we trade off automated moderation with nudging par-
ticipants to monitor group behavior, equitable speaking time,
and agenda progress. We have provided a brief video as sup-
plementary material to give the committee a flavor of what
the demo will look like.

Our goal over the next year is to add more natural lan-
guage processing (NLP) tools (e.g. automatic agenda man-
agement, automatic flagging of novel content, and auto-
mated relevance scoring of the arguments being made) to the
platform. We would also like to improve the design and us-
ability of this platform, and instrument the platform to mea-
sure the quality of the conversation. For NLP and usability,
we would like to get feedback on which features to priori-
tize; for instrumentation, we are looking for advice on which
metrics to measure and optimize against.
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Reputation Indicators

Used by project maintainers to prioritize issues and evaluate 
new contributors (Marlow et al, 2013)
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Incentivize engagement 

Distort persuasive equity?

Reputation Indicators

+ 

-
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Q. Does reputation 
have persuasive power 
in deliberation online?
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Preview of Findings

Reputation is 
persuasive

+10 reputation units 
+26% persuasion rate 

Patterns in effect heterogeneity 
consistent with reference cues theory 
(Bilancini & Boncinelli, 2018)

→
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Empirical Strategy
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I. Identifying opinion-change 

II. Disentangling non-reputation factors 

III. Handling unobserved confounders 

IV. Controlling for text
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I. Identifying Opinion-Change

Persuasion: Empirical Evidence. 
DellaVigna & Gentzkow. Annual 
Review of Economics. 2010. 

Typically unobserved — 
challenging to identify



I. Identifying Opinion-Change
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Our strategy: Dataset of online 
deliberation from ChangeMyView

>1 million debates between >800,000 members 
>20 moderators enforce high-quality deliberation

2013 2019
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Poster
Reputation

Challenger

Indicator of successful persuasion

Explicit indicators of successful persuasion 
provided by opinion-holders (posters)
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Prominent display of reputation based on 
number of individuals persuaded previously

Poster
Reputation

Challenger

Indicator of successful persuasion



Empirical Strategy
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I. Identifying opinion-change 

II. Disentangling non-reputation factors 

III. Handling unobserved confounders 

IV. Controlling for text



II. Disentangling Non-Reputation Factors
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Exploit multiple debates per challenger 

 

Controls for time-invariant challenger 
characteristics that affect persuasion

skill =
no. posters persuaded previously

no. previous debates



II. Disentangling Non-Reputation Factors
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Exploit multiple responses per 
opinion to control for opinion 
fixed-effects 

Addresses confounding arising 
from endogenous opinion 
selection

r1

r2

r3

Each 
challenger’s 
response  
a debate

→

Opinion
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III. Handling Unobserved Confounders
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Main concern 

Time-varying challenger 
characteristics correlated 
with persuasion

Example: users improving 
their rhetorical ability with 
platform experience



III. Handling Unobserved Confounders
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Instrument intuition 

• Higher (worse) position    
lower persuasion probability 

• Reputation  no. of posters 
persuaded previously

→

≈

r1

r2

r3

Decreasing 
attention, 
argument 
space

Opinion



III. Handling Unobserved Confounders

23

Instrument definition 

Mean past position of 
challenger before the 
present debate 

First-stage F-statistic > 3000

Similar to the Fox News channel position 
instrument (Martin & Yurukoglu, 2017)



III. Handling Unobserved Confounders
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Immediate concern 

Users selecting opinions to 
challenge based on their 
anticipated response position

Must control for response 
position in the present debate

Ypurpu

UpSpu

tpu

Zpu

(see paper for details)
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IV. Controlling for Text
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Why control for text? 

Instrument confounders must affect 
both instrument and outcome 

Are likely to affect the outcome 
through the response text 

NLP approaches: No guarantees on 
retaining confounders or inference

rpu

Zpu

Ypu

V
a

b

c

d

Xpu

(see paper for details)
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Our approach: Partially-linear IV model, estimated via 
double machine-learning (Chernozhukov et. al., 2016)

Figure 5: Instrument confounding via opinion selection.

Dependent Variable: I[u challenges > 1 future opinion]

Mean past position Zpu �0.0040 (0.00003)⇤⇤⇤

Reputation rpu (10 units) 0.0166 (0.00012)⇤⇤⇤

User fixed-effects (⇢u) 3

Month-year fixed-effects (mpu) 3

No. of debates 947, 181

R
2 0.57

Note: Standard errors displayed in parentheses.
⇤⇤⇤

p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 6: Instrument/opinion selection correlation.

Another plausible concern is of the instrument affecting the debate outcome via channels that do
not include the user’s reputation, which violates the instrument exclusion restriction. For example, if
users learn to be more persuasive from the earlier challengers of an opinion, a user with a high mean
past position could be more persuasive in the present than one with a low mean past position.

We address this concern in two ways. First, note that any user
characteristic correlated with successful persuasion is likely to affect the
debate outcome through the text of their responses. Hence, controlling
for the response text will block direct channels of influence between
the instrument and the debate outcome. This is formalized by the
causal graph on the right. Here, the reputation rpu, debate outcome
Ypu, response text Xpu and instrument Zpu are observed. V contains all
unobserved confounders of the instrument or reputation (or both) that
affect the outcome through the text Xpu. If we decompose the text into
conceptual components a, b, c and d, it is sufficient to control for a to
block the Zpu $ V ! aaa ! Ypu causal pathway.

We operationalize this idea by estimating the following partially-linear instrumental variable specifica-
tion with endogenous rpu, as formulated by (Chernozhukov et al., 2018):

Ypu = �1rpu + �2spu + �3tpu + g(⌧p, Xpu) + ✏pu E[✏pu|Zpu, ⌧p, spu, tpu, Xpu] = 0

Zpu = ↵1spu + ↵2tpu + h(⌧p, Xpu) + ✏
0
pu E[✏0pu|⌧p, spu, tpu, Xpu] = 0

In this specification, the high-dimensional covariates ⌧p (the opinion fixed-effects) and Xpu (a vector
representation of u’s response text) have been moved into the arguments of the “nuisance functions”
g(·) and h(·). As earlier, rpu is u’s reputation, spu is u’s skill, tpu is u’s position and Zpu (the instrument)
is the mean past position of u before opinion p. ✏pu and ✏

0
pu are error terms with zero conditional mean.

�1 is the parameter of interest, quantifying the causal effect of reputation on persuasion.
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Our approach: Partially-linear IV model, estimated via 
double machine-learning (Chernozhukov et. al., 2016)

Figure 5: Instrument confounding via opinion selection.

Dependent Variable: I[u challenges > 1 future opinion]

Mean past position Zpu �0.0040 (0.00003)⇤⇤⇤

Reputation rpu (10 units) 0.0166 (0.00012)⇤⇤⇤

User fixed-effects (⇢u) 3

Month-year fixed-effects (mpu) 3

No. of debates 947, 181

R
2 0.57

Note: Standard errors displayed in parentheses.
⇤⇤⇤

p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 6: Instrument/opinion selection correlation.

Another plausible concern is of the instrument affecting the debate outcome via channels that do
not include the user’s reputation, which violates the instrument exclusion restriction. For example, if
users learn to be more persuasive from the earlier challengers of an opinion, a user with a high mean
past position could be more persuasive in the present than one with a low mean past position.

We address this concern in two ways. First, note that any user
characteristic correlated with successful persuasion is likely to affect the
debate outcome through the text of their responses. Hence, controlling
for the response text will block direct channels of influence between
the instrument and the debate outcome. This is formalized by the
causal graph on the right. Here, the reputation rpu, debate outcome
Ypu, response text Xpu and instrument Zpu are observed. V contains all
unobserved confounders of the instrument or reputation (or both) that
affect the outcome through the text Xpu. If we decompose the text into
conceptual components a, b, c and d, it is sufficient to control for a to
block the Zpu $ V ! aaa ! Ypu causal pathway.

We operationalize this idea by estimating the following partially-linear instrumental variable specifica-
tion with endogenous rpu, as formulated by (Chernozhukov et al., 2018):

Ypu = �1rpu + �2spu + �3tpu + g(⌧p, Xpu) + ✏pu E[✏pu|Zpu, ⌧p, spu, tpu, Xpu] = 0

Zpu = ↵1spu + ↵2tpu + h(⌧p, Xpu) + ✏
0
pu E[✏0pu|⌧p, spu, tpu, Xpu] = 0

In this specification, the high-dimensional covariates ⌧p (the opinion fixed-effects) and Xpu (a vector
representation of u’s response text) have been moved into the arguments of the “nuisance functions”
g(·) and h(·). As earlier, rpu is u’s reputation, spu is u’s skill, tpu is u’s position and Zpu (the instrument)
is the mean past position of u before opinion p. ✏pu and ✏

0
pu are error terms with zero conditional mean.

�1 is the parameter of interest, quantifying the causal effect of reputation on persuasion.
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Standard 
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variable 
assumptions
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Our approach: Partially-linear IV model, estimated via 
double machine-learning (Chernozhukov et. al., 2016)

Figure 5: Instrument confounding via opinion selection.

Dependent Variable: I[u challenges > 1 future opinion]

Mean past position Zpu �0.0040 (0.00003)⇤⇤⇤

Reputation rpu (10 units) 0.0166 (0.00012)⇤⇤⇤

User fixed-effects (⇢u) 3

Month-year fixed-effects (mpu) 3

No. of debates 947, 181

R
2 0.57

Note: Standard errors displayed in parentheses.
⇤⇤⇤

p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 6: Instrument/opinion selection correlation.

Another plausible concern is of the instrument affecting the debate outcome via channels that do
not include the user’s reputation, which violates the instrument exclusion restriction. For example, if
users learn to be more persuasive from the earlier challengers of an opinion, a user with a high mean
past position could be more persuasive in the present than one with a low mean past position.

We address this concern in two ways. First, note that any user
characteristic correlated with successful persuasion is likely to affect the
debate outcome through the text of their responses. Hence, controlling
for the response text will block direct channels of influence between
the instrument and the debate outcome. This is formalized by the
causal graph on the right. Here, the reputation rpu, debate outcome
Ypu, response text Xpu and instrument Zpu are observed. V contains all
unobserved confounders of the instrument or reputation (or both) that
affect the outcome through the text Xpu. If we decompose the text into
conceptual components a, b, c and d, it is sufficient to control for a to
block the Zpu $ V ! aaa ! Ypu causal pathway.

We operationalize this idea by estimating the following partially-linear instrumental variable specifica-
tion with endogenous rpu, as formulated by (Chernozhukov et al., 2018):

Ypu = �1rpu + �2spu + �3tpu + g(⌧p, Xpu) + ✏pu E[✏pu|Zpu, ⌧p, spu, tpu, Xpu] = 0

Zpu = ↵1spu + ↵2tpu + h(⌧p, Xpu) + ✏
0
pu E[✏0pu|⌧p, spu, tpu, Xpu] = 0

In this specification, the high-dimensional covariates ⌧p (the opinion fixed-effects) and Xpu (a vector
representation of u’s response text) have been moved into the arguments of the “nuisance functions”
g(·) and h(·). As earlier, rpu is u’s reputation, spu is u’s skill, tpu is u’s position and Zpu (the instrument)
is the mean past position of u before opinion p. ✏pu and ✏

0
pu are error terms with zero conditional mean.

�1 is the parameter of interest, quantifying the causal effect of reputation on persuasion.
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No distributional 
assumptions placed 
on error terms (eg. 
Gaussian, Gumbel)
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Our approach: Partially-linear IV model, estimated via 
double machine-learning (Chernozhukov et. al., 2016)

Figure 5: Instrument confounding via opinion selection.

Dependent Variable: I[u challenges > 1 future opinion]

Mean past position Zpu �0.0040 (0.00003)⇤⇤⇤

Reputation rpu (10 units) 0.0166 (0.00012)⇤⇤⇤

User fixed-effects (⇢u) 3

Month-year fixed-effects (mpu) 3

No. of debates 947, 181

R
2 0.57

Note: Standard errors displayed in parentheses.
⇤⇤⇤

p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 6: Instrument/opinion selection correlation.

Another plausible concern is of the instrument affecting the debate outcome via channels that do
not include the user’s reputation, which violates the instrument exclusion restriction. For example, if
users learn to be more persuasive from the earlier challengers of an opinion, a user with a high mean
past position could be more persuasive in the present than one with a low mean past position.

We address this concern in two ways. First, note that any user
characteristic correlated with successful persuasion is likely to affect the
debate outcome through the text of their responses. Hence, controlling
for the response text will block direct channels of influence between
the instrument and the debate outcome. This is formalized by the
causal graph on the right. Here, the reputation rpu, debate outcome
Ypu, response text Xpu and instrument Zpu are observed. V contains all
unobserved confounders of the instrument or reputation (or both) that
affect the outcome through the text Xpu. If we decompose the text into
conceptual components a, b, c and d, it is sufficient to control for a to
block the Zpu $ V ! aaa ! Ypu causal pathway.

We operationalize this idea by estimating the following partially-linear instrumental variable specifica-
tion with endogenous rpu, as formulated by (Chernozhukov et al., 2018):

Ypu = �1rpu + �2spu + �3tpu + g(⌧p, Xpu) + ✏pu E[✏pu|Zpu, ⌧p, spu, tpu, Xpu] = 0

Zpu = ↵1spu + ↵2tpu + h(⌧p, Xpu) + ✏
0
pu E[✏0pu|⌧p, spu, tpu, Xpu] = 0

In this specification, the high-dimensional covariates ⌧p (the opinion fixed-effects) and Xpu (a vector
representation of u’s response text) have been moved into the arguments of the “nuisance functions”
g(·) and h(·). As earlier, rpu is u’s reputation, spu is u’s skill, tpu is u’s position and Zpu (the instrument)
is the mean past position of u before opinion p. ✏pu and ✏

0
pu are error terms with zero conditional mean.

�1 is the parameter of interest, quantifying the causal effect of reputation on persuasion.
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Non-parametric nuisance functions of 
the opinion fixed-effects  and text  

Estimated via machine-learning
τp Xpu
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Our approach: Partially-linear IV model, estimated via 
double machine-learning (Chernozhukov et. al., 2016)

Figure 5: Instrument confounding via opinion selection.

Dependent Variable: I[u challenges > 1 future opinion]

Mean past position Zpu �0.0040 (0.00003)⇤⇤⇤

Reputation rpu (10 units) 0.0166 (0.00012)⇤⇤⇤

User fixed-effects (⇢u) 3

Month-year fixed-effects (mpu) 3

No. of debates 947, 181

R
2 0.57

Note: Standard errors displayed in parentheses.
⇤⇤⇤

p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 6: Instrument/opinion selection correlation.

Another plausible concern is of the instrument affecting the debate outcome via channels that do
not include the user’s reputation, which violates the instrument exclusion restriction. For example, if
users learn to be more persuasive from the earlier challengers of an opinion, a user with a high mean
past position could be more persuasive in the present than one with a low mean past position.

We address this concern in two ways. First, note that any user
characteristic correlated with successful persuasion is likely to affect the
debate outcome through the text of their responses. Hence, controlling
for the response text will block direct channels of influence between
the instrument and the debate outcome. This is formalized by the
causal graph on the right. Here, the reputation rpu, debate outcome
Ypu, response text Xpu and instrument Zpu are observed. V contains all
unobserved confounders of the instrument or reputation (or both) that
affect the outcome through the text Xpu. If we decompose the text into
conceptual components a, b, c and d, it is sufficient to control for a to
block the Zpu $ V ! aaa ! Ypu causal pathway.

We operationalize this idea by estimating the following partially-linear instrumental variable specifica-
tion with endogenous rpu, as formulated by (Chernozhukov et al., 2018):

Ypu = �1rpu + �2spu + �3tpu + g(⌧p, Xpu) + ✏pu E[✏pu|Zpu, ⌧p, spu, tpu, Xpu] = 0

Zpu = ↵1spu + ↵2tpu + h(⌧p, Xpu) + ✏
0
pu E[✏0pu|⌧p, spu, tpu, Xpu] = 0

In this specification, the high-dimensional covariates ⌧p (the opinion fixed-effects) and Xpu (a vector
representation of u’s response text) have been moved into the arguments of the “nuisance functions”
g(·) and h(·). As earlier, rpu is u’s reputation, spu is u’s skill, tpu is u’s position and Zpu (the instrument)
is the mean past position of u before opinion p. ✏pu and ✏

0
pu are error terms with zero conditional mean.

�1 is the parameter of interest, quantifying the causal effect of reputation on persuasion.
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Consistent estimates, valid inference 
if product of nuisance function 

convergence rates is at least n−1/2
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Nuisance functions: Deep ReLU neural networks

[Xpu, �p] � �1�D R1 � �1�s1

W2 � �s1�1 a2( � )

�rpu � �+

�Ypu � {0,1}

�spu � [0,100]
�tpu � �

Input Output Layer Predicted Output

W1 � �D�s1 a1( � )

Hidden Layer

�Zpu � �+

Figure 6: A neural network with one hidden layer (h = 1). The neural network transforms the D-dimensional
input, a concatenation of the response text vector Xpu and the fixed-effects indicator vector for ⌧p, into a
1-dimensional output. WWW 1 and WWW 2 are parameters to be estimated. a1(·) and a2(·) are activation functions.

Each layer i multiplies the intermediate vector Ri�1 produced by the previous layer with WWW i, and
applies the activation function ai(·) to produce Ri = ai(Ri�1WWW i). Figure 6 illustrates a neural network
with one hidden layer (h = 1), input dimensionality D and output dimensionality O = 1. The neural
network transforms the input, a concatenation of the response text vector Xpu and the fixed-effects
indicator vector for ⌧p, into the 1-dimensional predicted output a2(a1([Xpu, ⌧p]⇥WWW 1)⇥WWW 2).

We estimate five neural networks with rectified linear unit (ReLU) activations to predict (i) debate
success Ypu 2 {0, 1}, (ii) reputation rpu 2 Z+, (iii) skill spu 2 [0, 100] (as a percentage), (iv) position
tpu 2 R (standardized to have zero-mean and unit-variance) and (v) the instrument Zpu 2 R+ from
the response text Xpu and opinion fixed-effects ⌧p. Though recurrent (Hochreiter and Schmidhuber,
1997) and convolutional (Kim, 2014) neural networks are more popular for textual prediction tasks,
ReLU neural networks have guaranteed n

�1/4 convergence rates (Farrell et al., 2018) that we require
for consistent estimation and valid inference. Hence, we set each of the hidden layer activations
a1(·), . . . , ah(·) to the rectifier function ai(x) = max(0, x). Since the output of each neural network is
one-dimensional, we set the size of the output layer matrix WWW h+1 to sh ⇥ 1.

Output layer activations and loss functions. For the debate success prediction network with the
binary target Ypu 2 {0, 1}, we set the output layer activation to the logistic sigmoid function: ah+1(x) =

(1 + e
�x)�1 2 [0, 1]. For the skill prediction network with the bounded target spu 2 [0, 100], we set the

output layer activation to the scaled logistic sigmoid function: ah+1(x) = (1 + e
�x)�1 ⇥ 100 2 [0, 100].

For the reputation and instrument prediction networks with nonnegative targets rpu 2 Z+ and
Zpu 2 R+, we set the output layer activation to the rectifier function: ah+1(x) = max(0, x). For the
position prediction network with unbounded target tpu 2 R, we set the output layer activation to
the identity function: ah+1(x) = x. We estimate the parameters WWW 1, . . . ,WWW h+1 for the debate success
prediction network by minimizing the binary cross-entropy loss Ypulog(Ŷpu) + (1� Ypu)log(1� Ŷpu)

(where Ŷpu is the predicted output), and for the other networks by minimizing the mean squared error.
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Persuasive power increases with cognitive load and 
decreases with issue-involvement of opinion-holder

Reputation effect-share (vs skill)

Short response 82%
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Consistent with reference cues theory of 
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lower cognitive cost, and (ii) are 
accurate proxies 

Potential strategy: Manipulate 
perceived reference cue accuracy
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Debates by challengers who had deleted their ChangeMyView accounts before data collection
appear in our dataset with the “[deleted]” placeholder username. The inability to link the debates by
such challengers over time makes it impossible to measure their true reputation and skill. Assuming
that such challengers have zero reputation and skill sµ (based on equation 3) is likely to attenuate our
estimates due to measurement error. Hence, we exclude all 118,277 such debates from our dataset13.
Our final dataset contains 91,730 opinions (23.5% of them conceded) shared by 60,573 unique posters,
which led to 1,026,201 debates (3.5% of them successful) with 143,891 unique challengers. Table 1
reports descriptive statistics of our dataset, and Figure 3 reports user-level distributions of participation
and debate success. Table 2 summarizes the notation that will use in all subsequent sections.

Mean Standard Deviation Median

Statistics of challengers in each debate
Reputation rpu 15.9 43.4 1.0
Skill spu (%) 3.0 3.7 1.6
Position tpu 14.8 24.3 8.0
Mean past position Zpu 10.4 13.0 7.5
Number of past debates

P
p0<p Sp0u 244.4 591.7 24.00

Statistics of overall dataset
Number of opinions 91,730

Opinions conceded 21,576
Opinions leading to more than 1 debate 84,998 (number of clusters with opinion fixed-effects)

Number of debates 1,026,201
Successful debates 36,187
Multi-party debates 348,041

Number of debates per opinion 11.2 12.7 9
Successful debates per opinion 0.4 0.9 0

Number of unique posters 60,573
Opinions per poster 1.5 2.4 1

Number of unique challengers 143,891
Challengers with more than 1 debate 64,871 (number of clusters with user fixed-effects)

Number of debates per challenger 7.1 58.5 1
Successful debates per challenger 0.3 3.2 0

Table 1: Descriptive Statistics. Debates from March 1, 2013 to October 10, 2019.

Figure 3: Debate participation and success. Distribution of total and successful debates per user.

13For completeness, we also report our main results including debates with deleted challengers in Appendix C.
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Dependent Variable: Reputation rpu

Mean past position Zpu �0.1833 (0.003)⇤⇤⇤
Skill spu (percentage) 2.3055 (0.012)⇤⇤⇤
Position tpu (std. deviations) �1.7354 (0.067)⇤⇤⇤
Opinion fixed-effects (⌧p) 3
Instrument F-Statistic 3, 338.7
No. of debates 1, 019, 469
R

2 0.22

Note: Standard errors displayed in parentheses. ⇤⇤⇤
p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 5: First-stage estimates. Mean past position as an instrument for reputation.

An immediate concern is users selecting opinions to challenge based on their anticipated position in
the sequence of challengers, since users can observe the number of ongoing and concluded debates
with the poster before deciding to challenge an opinion. We characterize this scenario using the
causal graph in Figure 5, which extends the causal graph in Figure 4 with shaded nodes Zpu (for the
instrument) and tpu (for the challenger’s present position). tpu affects the debate outcome Ypu, based on
equation (2). Recall from Section 4.1 that our specifications implicitly condition on the collider Spu = 1.
If the instrument is correlated with opinion selection (depicted by the undirected edge Zpu $ Spu) and
users select opinions to challenge based on their anticipated position (depicted by the edge tpu ! Spu),
conditioning on Spu will open the confounding causal pathway tpu ! Spu $ Zpu. Hence, it is essential
to control for the challenger’s present position tpu, which could otherwise confound the instrument.

The causal graph in Figure 5 reveals a second source of instrument confounding that has received
recent attention (Hughes et al., 2019; Swanson, 2019). If the instrument is correlated with opinion
selection (depicted by the undirected edge Zpu $ Spu) and some unobserved opinion characteristic
Up (such as the opinion topic) affects both opinion selection and debate success, conditioning on Spu

opens the confounding causal pathway Up ! Spu $ Zpu that violates instrument exogeneity.

We can test for correlation between the instrument and opinion selection by estimating the following
linear probability model of a user challenging more than one opinion after opinion p, where ⇢u is a
user fixed-effect, mpu is a calendar month-year fixed-effect and ✏pu is a Gaussian error term:

I[u challenges > 1 future opinion] = ⇢u +mpu + ✓1Zpu + ✓2rpu + ✏pu

The estimates of ✓1 in Table 6 suggest a small but significant negative correlation between Zpu and Spu,
justifying our concerns of endogenous opinion selection violating instrument exogeneity. Fortunately
(as discussed Section 4.1), the opinion fixed-effect ⌧p controls for all opinion characteristics, including
unobserved Up. This alleviates concerns of instrument exogeneity being violated due to endogenous
opinion selection.
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We now detail our overall estimation procedure for the partially-linear instrumental variable
specification. We include the opinion fixed-effect ⌧p, skill spu and position tpu as controls. S and S 0 are
disjoint subsamples of the data, and mr(·),ms(·),mt(·),mp(·), l(·) and q(·) are nonparametric functions
that we detail in the next subsection. The procedure is as follows:

1. Estimate the following conditional expectation functions on sample S 0:

i. l(Xpu, ⌧p) = E[Ypu|Xpu, ⌧p] to get l̂(·).

ii. q(Xpu, ⌧p) = E[Zpu|Xpu, ⌧p] to get q̂(·).

iii. mr(Xpu, ⌧p) = E[rpu|Xpu, ⌧p] to get m̂r(·).

iv. ms(Xpu, ⌧p) = E[spu|Xpu, ⌧p] to get m̂s(·).

v. mt(Xpu, ⌧p) = E[tpu|Xpu, ⌧p] to get m̂t(·).

2. Estimate the following residuals on sample S :

i. Ỹpu = Ypu � l̂(Xpu, ⌧p).

ii. Z̃pu = Zpu � q̂(Xpu, ⌧p).

iii. r̃pu = rpu � m̂r(Xpu, ⌧p).

iv. s̃pu = spu � m̂s(Xpu, ⌧p).

v. t̃pu = tpu � m̂t(Xpu, ⌧p).

3. Run a two-stage least-squares regression of Ỹpu on r̃pu, s̃pu, t̃pu using Z̃pu as an instrument for
r̃pu to obtain the estimated local average treatment effects of reputation, skill and position on
debate success.

We partition the debates for opinions with more than one response (mirroring the data used in
the specifications with opinion fixed-effects) uniformly at random into an estimation subsample S

0

containing 10% of the debates (101,946 debates) and an inference subsample S containing 90% of the
debates (917,523 debates), ensuring that every opinion is represented in both S and S

0. In the next
section, we describe how we use neural networks with rectified linear unit (ReLU) activation functions
for the nonparametric functions mr(·),ms(·),mt(·),mp(·), l(·) and q(·), which have been shown to
converge at n�1/4 rates (Farrell et al., 2018) that enables consistent estimation and valid inference.

4.4 Neural Models of Text as Nuisance Functions

A fully-connected neural network with h hidden layers is parameterized by matrices WWW 1, . . . ,WWW h+1

and activation functions (called activations) a1, . . . , ah+1. The hidden layer sizes s1, . . . , sh are architec-
tural hyperparameters that determine the sizes of the matrices WWW 1, . . . ,WWW h+1 as follows, where D and
O are the dimensionalities of the neural network input and output, respectively:

Size of WWW 1 = D ⇥ s1

Size of WWW i = si�1 ⇥ si for i = 2, . . . , h

Size of WWW h+1 = sh ⇥O
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Number of Activation Functions

Prediction target Hidden layers Hidden Layer Output Layer Loss Function

Debate success Ypu 2 {0, 1} 5 ReLU Sigmoid Binary Cross-Entropy

Reputation rpu 2 Z+ 3 ReLU Rectifier Mean squared error

Skill spu 2 [0, 100] (percentage) 3 ReLU Sigmoid Mean squared error

Position tpu 2 R (standardized) 3 ReLU Identity Mean squared error

Instrument Zpu 2 R+ 5 ReLU Rectifier Mean squared error

Table 7: Architectural hyperparameters. The input layer matrix WWW 1 of each neural network has size 89,924
⇥ 4,926, where 89,924 is the dimensionality of the input vector (the vocabulary size + the number of unique
opinion clusters) and 4,926 is the dimensionality of Xpu (the vocabulary size). Each of the h hidden layer
matrices WWW 2, . . .WWWh has size 4,926 ⇥ 4,926, and the output layer matrix WWWh+1 has size 4,926 ⇥ 1.

Subsample Loss

Prediction target Learning Rate Batch Size Weight-Decay Train Validation Inference

Debate success Ypu 2 {0, 1} 0.0001 50,000 10000 0.148 0.155 0.152

Reputation rpu 2 Z+ 0.0001 50,000 10 39.801 40.406 39.842

Skill spu 2 [0, 100] (percentage) 0.0001 50,000 10 3.672 3.764 3.707

Position tpu 2 R (standardized) 0.0001 50,000 10 0.658 0.789 0.796

Instrument Zpu 2 R+ 0.0001 50,000 10000 12.389 13.370 13.217

Table 8: Optimization hyperparameters. The subsample losses on S
0
train, S0

val and S are reported after training
each neural network with the selected hyperparameters for at most 5,000 mini-batch iterations (with early-
stopping) on S

0
train. The binary cross-entropy subsample loss is reported for the network predicting Ypu and the

root mean squared prediction error is reported for the other networks.

Hence, after having selected the number of hidden layers for each neural network via the aforemen-
tioned procedure, we evaluate the validation loss of each neural network (for at most 5,000 mini-batch
iterations with early-stopping) with an increasingly large weight-decay penalty (in the logarithmically-
spaced range 0.001, 0.01, 0.1, . . . ), until the validation loss no longer improves. The final neural
network thus found will have sufficient representational capacity and be sufficiently regularized to
generalize well out-of-sample. During the process of tuning the number of hidden layers and the
weight-decay penalty, we also empirically evaluate and select the values of the learning rate and
mini-batch size that deliver the minimum validation loss with fast and stable convergence.

Table 7 summarizes the selected architectural hyperparameters. Table 8 summarizes the selected
optimization hyperparameters and the losses on each data subsample, which reflect the extent to
which each target is correlated with potential confounders present in response text. After fixing the
selected hyperparameters, we re-estimate the neural networks with on the full estimation subsample
S
0, estimate the prediction residuals on the inference sample S and run a two-stage least-squares

regression with these residuals, as described in the double machine-learning procedure in Section 4.3.
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Table 8: Optimization hyperparameters. The subsample losses on S
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each neural network with the selected hyperparameters for at most 5,000 mini-batch iterations (with early-
stopping) on S

0
train. The binary cross-entropy subsample loss is reported for the network predicting Ypu and the

root mean squared prediction error is reported for the other networks.

Hence, after having selected the number of hidden layers for each neural network via the aforemen-
tioned procedure, we evaluate the validation loss of each neural network (for at most 5,000 mini-batch
iterations with early-stopping) with an increasingly large weight-decay penalty (in the logarithmically-
spaced range 0.001, 0.01, 0.1, . . . ), until the validation loss no longer improves. The final neural
network thus found will have sufficient representational capacity and be sufficiently regularized to
generalize well out-of-sample. During the process of tuning the number of hidden layers and the
weight-decay penalty, we also empirically evaluate and select the values of the learning rate and
mini-batch size that deliver the minimum validation loss with fast and stable convergence.

Table 7 summarizes the selected architectural hyperparameters. Table 8 summarizes the selected
optimization hyperparameters and the losses on each data subsample, which reflect the extent to
which each target is correlated with potential confounders present in response text. After fixing the
selected hyperparameters, we re-estimate the neural networks with on the full estimation subsample
S
0, estimate the prediction residuals on the inference sample S and run a two-stage least-squares

regression with these residuals, as described in the double machine-learning procedure in Section 4.3.
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Dependent Variable: Debate Success Ypu

No. of opinions challenged previously
P

p0<p Sp0u �1⇥ 10�6 (0.7⇥ 10�6)
Position tpu (std. deviations) �0.0107 (0.0003)⇤⇤⇤
User fixed-effects (⇢u) 3
Month-year fixed-effects (mpu) 3
No. of debates 947, 181
R

2 0.07

Note: Standard errors displayed in parentheses. ⇤⇤⇤
p < 0.001;⇤⇤ p < 0.01;⇤ p < 0.05

Table 3: Estimated effect of past experience on debate success.

However, skill does not capture challenger characteristics that vary with their tenure on Change-
MyView. By assuming the absence of such characteristics, the baseline specifications implicitly assume
that users do not learn to be more persuasive with experience on the platform. We provide empirical
evidence to support this assumption by estimating the following linear probability model:

Ypu = ⇢u +mpu + ✓1

X

p0<p

Sp0u + ✓2tpu + ✏pu

where ⇢u is a user fixed-effect capturing all unobserved time-invariant user characteristics, mpu is
a calendar month-year fixed-effect capturing unobserved temporal factors, tpu is the (standardized)
user’s position in the sequence of challengers of opinion p and ✏pu is a Gaussian error term.

P
p0<p Sp0u

is the number of opinions that u challenged previously, serving as a measure of their past experience.
✓1 is the within-user correlation between past experience and the debate outcome. If users improve
with experience, we expect ✓1 to be positive. However, the estimates of ✓1 reported in Table 3 are
small and statistically insignificant. We attribute this to users having already acquired argumentation
experience outside the platform, with little to gain from additional experience on the platform.

Second, controlling for the opinion fixed-effect ⌧p addresses confounding due to users endoge-
nously selecting which opinions to challenge. To see why opinion selection is a concern, recall the
opinion selection indicator Spu that equals 1 when user u challenges opinion p. Since we estimate our
specifications on observed debates, our specifications implicitly condition on Spu = 1. If the opinion
selection probability P[Spu = 1] is correlated with (i) reputation, and (ii) debate success (for example,
if users prefer to challenge opinions on topics that are easier to persuade in), the effect of reputation
on debate success will be confounded due to endogenous sample selection (Heckman, 1979).

We characterize this confounding using the causal graph in Figure 4 based on the analyses in
(Hernán et al., 2004). In causal graphs (Pearl, 2009), an edge A ! B implies that A may or may not
cause B, while the absence of an edge implies the stronger assumption that A does not cause B. An
undirected edge $ implies potential causality in either direction. Observed variables are shaded and
unobserved variables are unshaded.
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